ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
M — середина высоты BD в равнобедренном треугольнике ABC.
Точка M служит центром окружности радиуса MD. Найдите угловую
величину дуги окружности, заключённой между сторонами BA и BC,
если
Какое наименьшее количество трехклеточных уголков можно разместить в квадрате 8× 8 так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка? Высота конуса равна h , а образующая равна l . Найдите радиус основания и площадь осевого сечения. Найдите наименьшее число, дающее следующие остатки: 1 – при делении на 2, 2 – при делении на 3, 3 – при делении на 4, 4 – при делении на 5, 5 – при делении на 6.
Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.
В пространстве даны точки O1, O2, O3 и точка A. Точка A симметрично отражается относительно точки O1, полученная точка A1 -- относительно O2, полученная точка A2 — относительно O3. Получаем некоторую точку A3, которую также последовательно отражаем относительно O1, O2, O3. Доказать, что полученная точка совпадает с A. |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 810]
Пусть x - некоторое натуральное число. Среди утверждений: 2x больше 70;
Можно ли из квадрата со стороной 10 см вырезать несколько кругов, сумма диаметров которых больше 5 м?
Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?
В пространстве дана плоскость П и точки A и B по одну сторону от П (AB не параллельно П). Рассматриваются сферы, проходящие через точки A и B, касающиеся плоскости П. Докажите, что точки касания этих сфер и плоскости П лежат на одной окружности.
В пространстве даны параллелограмм ABCD и плоскость M.
Расстояния от точек A, B и C до плоскости M равны
соответственно a, b и c.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 810]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке