|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?
На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке? Докажите, что при n > 0 многочлен x2n+1 – (2n + 1)xn+1 + (2n + 1)xn – 1 делится на (x – 1)³. |
Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 6702]
Через точку на плоскости провели 10 прямых, после чего плоскость разрезали по этим прямым на углы.
На сколько градусов поворачивается за минуту минутная стрелка? Часовая стрелка?
Какой угол образуют минутная и часовая стрелка в 3 часа 05 минут?
Из точки O на плоскости выходят 4 луча, следующие друг за другом по часовой стрелке: OA, OB, OC и OD. Известно, что сумма углов AOB и COD равна 180°. Докажите, что биссектрисы углов AOC и BOD перпендикулярны.
В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как 1 : 2.
Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 6702] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|