Страница: 1
2 >> [Всего задач: 9]
Две окружности касаются в точке
A. К ним
проведена общая (внешняя) касательная, касающаяся окружностей
в точках
C и
B. Докажите, что
CAB = 90
o.
Две окружности
S1 и
S2 с центрами
O1 и
O2
касаются в точке
A. Через точку
A проведена прямая,
пересекающая
S1 в точке
A1 и
S2 в точке
A2. Докажите,
что
O1A1 ||
O2A2.
Три окружности
S1,
S2 и
S3 попарно касаются друг
друга в трех различных точках. Докажите, что прямые,
соединяющие точку касания окружностей
S1 и
S2 с двумя
другими точками касания, пересекают окружность
S3 в точках,
являющихся концами ее диаметра.
Две касающиеся окружности с центрами
O1
и
O2 касаются внутренним образом окружности радиуса
R
с центром
O. Найдите периметр треугольника
OO1O2.
Окружности
S1 и
S2 касаются окружности
S
внутренним образом в точках
A и
B, причем одна из точек
пересечения окружностей
S1 и
S2 лежит на отрезке
AB.
Докажите, что сумма радиусов окружностей
S1 и
S2 равна
радиусу окружности
S.
Страница: 1
2 >> [Всего задач: 9]