|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют). Дана клетчатая таблица 100×100, клетки которой покрашены в чёрный и белый цвета. При этом во всех столбцах поровну чёрных клеток, в то время как во всех строках разные количества чёрных клеток. Каково максимальное возможное количество пар соседних по стороне разноцветных клеток? |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]
Докажите неравенство 2m+n–2 ≥ mn, где m и n – натуральные числа.
Для каких n выполняются неравенства: а) n! > 2n; б) 2n > n².
Вычислите произведение
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33] |
|||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|