ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа? Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что OM = KN. Правильный треугольник разбит на n2 одинаковых правильных
треугольников (рис.). Часть из них занумерована числами
1, 2,..., m, причем треугольники
с последовательными номерами имеют смежные стороны. Докажите,
что
m |
Страница: 1 2 3 4 >> [Всего задач: 16]
Угол между сторонами AB и CD четырехугольника ABCD
равен
В четырехугольнике ABCD стороны AB и CD равны,
причем лучи AB и DC пересекаются в точке O. Докажите, что прямая,
соединяющая середины диагоналей, перпендикулярна биссектрисе угла AOD.
На сторонах BC и AD четырехугольника ABCD взяты
точки M и N так, что
BM : MC = AN : ND = AB : CD.
Лучи AB и DC пересекаются в точке O. Докажите, что прямая MN
параллельна биссектрисе угла AOD.
Докажите, что биссектрисы углов выпуклого
четырехугольника образуют вписанный четырехугольник.
Два различных параллелограмма ABCD и
A1B1C1D1
с соответственно параллельными сторонами вписаны в
четырехугольник PQRS (точки A и A1 лежат на стороне PQ, B
и B1 — на QR и т. д.). Докажите, что диагонали четырехугольника
параллельны сторонам параллелограммов.
Страница: 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке