|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд. Докажите, что ни при каком целом A многочлен 3x2n + Axn + 2 не делится на многочлен 2x2m + Axm + 3. Докажите, что при любых a, b, c имеет место неравенство a4 + b4 + c4 ≥ abc(a + b + c). Решите ребус: БАО×БА×Б = 2002. |
Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 6702]
Из конца A диаметра AC окружности опущен перпендикуляр AP на касательную, проведённую через лежащую на окружности точку B, отличную от A и C. Докажите, что AB – биссектриса угла PAC.
Боковая сторона AB трапеции ABCD разделена на пять равных частей, и через третью точку деления, считая от точки B, проведена прямая, параллельная основаниям BC и AD. Найдите отрезок этой прямой, заключённый между сторонами трапеции, если BC = a и AD = b.
В треугольнике ABC, стороны которого a, b и c даны, проведена параллельно AC прямая MN так, что AM = BN. Найдите MN.
Докажите, что биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.
В равнобедренном треугольнике ABC сторона AC = b, стороны BA = BC = a, AM и CN – биссектрисы углов A и C. Найдите MN.
Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 6702] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|