Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 45]
|
|
Сложность: 3+ Классы: 9,10
|
В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.
|
|
Сложность: 3+ Классы: 9,10,11
|
Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.
Число N является произведением двух последовательных натуральных чисел. Докажите, что
а) можно приписать к этому числу справа две цифры так, чтобы получился точный квадрат;
б) если N > 12, это можно сделать единственным способом.
На сторонах АВ и ВС треугольника АВС выбраны точки К и М соответственно так, что КМ || АС. Отрезки АМ и КС пересекаются в точке О. Известно, что АК = АО и КМ = МС. Докажите, что АМ = КВ.
|
|
Сложность: 3+ Классы: 9,10
|
Бумажный треугольник, один из углов которого равен α, разрезали на несколько треугольников. Могло ли случиться, что все углы всех полученных треугольников меньше α
а) в случае, если α = 70°;
б) в случае, если α = 80°?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 45]