Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 7958]
|
|
Сложность: 2+ Классы: 10,11
|
Числовая функция f такова, что для любых x и y выполняется равенство f(x + y) = f(x) + f(y) + 80xy. Найдите f(1), если f(0,25) = 2.
К некоторому числу прибавили его сумму цифр и получили 2014. Приведите пример такого числа.
Графики трёх функций y = ax + a, y = bx + b и y = cx + d имеют общую точку, причём a ≠ b. Обязательно ли c = d?
|
|
Сложность: 2+ Классы: 7,8,9
|
В прямоугольном треугольнике АВС проведена высота СН из вершины прямого угла. Из вершины В большего острого угла проведён отрезок BK так, что ∠CBK = ∠CАB (см. рис.). Докажите, что СН делит BK пополам.
На рисунке изображен график функции y = (a² – 1)(x² – 1) + (a – 1)(x – 1). Найдите координаты точки А.
Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 7958]