ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах? Середины E и F параллельных сторон BC и AD параллелограмма ABCD соединены с вершинами D и B соответственно. Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой. |
Страница: 1 [Всего задач: 5]
В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что A1C·BC = B1C·AC.
В прямоугольном треугольнике ABC с прямым углом C проведена высота CH. Докажите, что AC² = AB·AH и CH² = AH·BH.
В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины.
На стороне BC треугольника ABC взята точка A1 так, что BA1 : A1C = 2 : 1. В каком отношении медиана CC1 делит отрезок AA1?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке