ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
год:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Ребро SB пирамиды SABC перпендикулярно плоскости ABC , AB=4 ,
BC=2 ,
Сфера касается боковых граней четырёхугольной пирамиды
SABCD в точках, лежащих на рёбрах AB , BC , CD , DA .
Известно, что высота пирамиды равна На стороне AC треугольника ABC взята точка D так, что AD : DC = 1 : 2. Докажите что у треугольников ADB и CDB есть по равной медиане. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 97]
Золотоискатель Джек добыл 9 кг золотого песка. Сможет ли он за три взвешивания отмерить 2 кг песка с помощью чашечных весов: а) с двумя гирями — 200 г и 50 г; б) с одной гирей 200 г?
Известно, что p > 3 и p – простое число.
Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя?
Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?
Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 97]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке