Страница:
<< 1 2
3 4 >> [Всего задач: 17]
Рассматривается функция
y =
f (
x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа
k ≠ 0 соотношению
f (
x +
k)
. (1 −
f (
x)) = 1 +
f (
x). Доказать, что
f (
x) — периодическая функция.
|
|
Сложность: 4- Классы: 8,9,10
|
Дано число
x, большее 1. Обязательно ли имеет место равенство
[
] = [
]?
Имеется 5 гирь. Их массы равны 1000 г, 1001 г, 1002 г, 1004 г и 1007 г, но
надписей на гирях нет и внешне они неотличимы. Имеются весы со стрелкой,
которые показывают массу в граммах. Как с помощью трёх взвешиваний определить
гирю в 1000 г?
|
|
Сложность: 4- Классы: 8,9,10
|
Натуральные числа a1, a2, ..., an таковы, что каждое не превышает своего номера (ak ≤ k) и сумма всех чисел – чётное число.
Доказать, что одна из сумм a1 ± a2 ± ... ± an равна нулю.
|
|
Сложность: 4- Классы: 8,9,10
|
У правильного 1981-угольника отмечены 64 вершины. Доказать, что существует
трапеция с вершинами в отмеченных точках.
Страница:
<< 1 2
3 4 >> [Всего задач: 17]