ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Квадратный лист бумаги разрезали по прямой на две части. Одну из полученных частей снова разрезали на две части, и так много раз. Какое наименьшее число разрезов необходимо, чтобы среди полученных частей могло оказаться ровно 100 двадцатиугольников? |
Страница: 1 2 >> [Всего задач: 6]
Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.
Существует ли такая непериодическая функция f, определённая на всей числовой прямой, что при любом x выполнено равенство f(x+1)=f(x+1)f(x)+1?
В остроугольном треугольнике ABC (AB<BC) провели высоту BH. Точка P симметрична точке H относительно прямой, соединяющей середины сторон AC и BC. Докажите, что прямая BP содержит центр описанной окружности треугольника ABC.
Из шахматной доски 8×8 вырезали 10 клеток. Известно, что среди вырезанных клеток есть как черные, так и белые. Какое наибольшее количество двухклеточных прямоугольников можно после этого гарантированно вырезать из этой доски?
Существует ли тетраэдр, в сечениях которого двумя разными плоскостями получаются квадраты 100×100 и 1×1?
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке