Страница: 1 [Всего задач: 5]
Задача
57923
(#1)
|
|
Сложность: 3+ Классы: 8,9
|
На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной
стороне квадрата.
Найдите величину угла MAK.
Задача
97815
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от
1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их
сумма равна 987654321.
а) Доказать, что найдутся хотя бы две кондиционные пары  ((a, b)  и  (b, a)  – одна и та же пара).
б) Доказать, что кондиционных пар – нечётное число.
Около остроугольного треугольника ABC описана окружность с центром O. Перпендикуляры, опущенные из точки O на стороны треугольника, продолжены до пересечения с окружностью в точках K, M и P. Докажите, что где Q – центр вписанной окружности треугольника ABC.
Задача
97817
(#4)
|
|
Сложность: 4 Классы: 9,10
|
a1, a2, a3, ... – возрастающая последовательность натуральных чисел. Известно, что
aak = 3k для любого k.
Найти а) a100; б) a1983.
Задача
97818
(#5)
|
|
Сложность: 5- Классы: 8,9,10
|
На бесконечной во все стороны шахматной доске выделено некоторое множество
клеток A. На всех клетках доски, кроме множества A, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое k и такой способ движения королей, что после k ходов вся доска будет заполнена королями? Рассмотрите варианты:
а) A есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная и одна вертикальная линии занумерованы всеми целыми числами от минус бесконечности до бесконечности и каждая клетка доски обозначается двумя числами – координатами по этим двум осям);
б) A есть множество всех клеток, каждая из которых бьётся хотя бы одним из 100 ферзей, расположенных каким-то фиксированным образом.
Страница: 1 [Всего задач: 5]