Страница: 1
2 >> [Всего задач: 6]
Задача
98614
(#1)
|
|
Сложность: 3+ Классы: 8,9
|
Вася пишет на доске квадратное уравнение ax² + bx + c = 0 с натуральными коэффициентами a, b, c. После этого Петя, если хочет, может заменить один или два знака "+" на "–". Если у получившегося уравнения оба корня целые, то выигрывает Вася, если же корней нет или хотя бы один из них нецелый – Петя. Может ли Вася подобрать коэффициенты уравнения так, чтобы наверняка выиграть у Пети?
Задача
98615
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Дан треугольник ABC. В нём R – радиус описанной окружности,
r – радиус вписанной окружности, a – длина наибольшей стороны, h – длина наименьшей высоты. Докажите, что R/r > a/h.
Задача
98616
(#3)
|
|
Сложность: 4- Классы: 8,9
|
В однокруговом турнире участвовали 15 команд.
а) Докажите, что хотя бы в одной игре встретились команды, которые
перед этой игрой участвовали в сумме в нечётном числе игр этого турнира.
б) Могла ли такая игра быть единственной?
|
|
Сложность: 4 Классы: 7,8,9
|
Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник?
Задача
98618
(#5)
|
|
Сложность: 4- Классы: 8,9
|
Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?
Страница: 1
2 >> [Всего задач: 6]