ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

У входа в пещеру стоит барабан, на нём по кругу через равные промежутки расположены N одинаковых с виду бочонков. Внутри каждого бочонка лежит селёдка – либо головой вверх, либо головой вниз, но где как – не видно (бочонки закрыты). За один ход Али-Баба выбирает любой набор бочонков (от 1 до N штук) и переворачивает их все. После этого барабан приходит во вращение, а когда останавливается, Али-Баба не может определить, какие бочонки перевёрнуты. Пещера откроется, если во время вращения барабана все N селёдок будут расположены головами в одну сторону. При каких N Али-Баба сможет открыть пещеру?

Вниз   Решение


Цены снижены на 20%. На сколько процентов больше можно купить товаров на ту же зарплату?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 65381  (#10.6)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Композиции симметрий ]
Сложность: 4
Классы: 10,11

Автор: Соколов А.

Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65382  (#10.7)

Темы:   [ Четырехугольная пирамида ]
[ Сфера, описанная около пирамиды ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 10,11

Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.

Прислать комментарий     Решение

Задача 65383  (#10.8)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Рациональные и иррациональные числа ]
[ Доказательство от противного ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

Можно ли разрезать какой-нибудь прямоугольник на правильный шестиугольник со стороной 1 и несколько равных прямоугольных треугольников с катетами 1 и ?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .