ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 65376  (#10.1)

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 10,11

Пусть K – точка на стороне BC треугольника ABC, KN – биссектриса треугольника AKC. Прямые BN и AK пересекаются в точке F, а прямые CF и AB – в точке D. Докажите, что KD – биссектриса треугольника AKB.

Прислать комментарий     Решение

Задача 65377  (#10.2)

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Докажите, что всякий треугольник площади 1 можно накрыть равнобедренным треугольником площади менее  .

Прислать комментарий     Решение

Задача 65378  (#10.3)

Темы:   [ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Подобные треугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

В треугольнике ABC точки A1, B1 и C1 – середины сторон BC, CA и AB соответственно. Точки B2 и C2 – середины отрезков BA1 и CA1 соответственно. Точка B3 симметрична C1 относительно B, а точка C3 симметрична B1 относительно C. Докажите, что одна из точек пересечения описанных окружностей треугольников BB2B3 и CC2C3 лежит на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 65379  (#10.4)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Средняя линия треугольника ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 5
Классы: 10,11

Автор: Яковлев И.

В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1, CC1 и отмечены точки A2, B2, C2, в которых вневписанные окружности касаются сторон BC, CA, AB соответственно. Прямая B1C1 касается вписанной окружности треугольника. Докажите, что точка A1 лежит на описанной окружности треугольника A2B2C2.

Прислать комментарий     Решение

Задача 65380  (#10.5)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ортоцентр и ортотреугольник ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 10,11

В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что  ∠MBK = 90°.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .