ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Расшифровать пример на умножение, если буквой Ч зашифрованы чётные числа, а буквой Н – нечётные.

   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 391]      



Задача 102798

Темы:   [ Симметричная стратегия ]
[ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 7,8,9

Двое пишут 2k-значное число, используя цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй. Третью снова первый и т.д. Может ли первый добиться того, чтобы полученное число делилось на 9, если второй хочет этому помешать? Рассмотреть случаи:   а)  k = 10;   б)  k = 15.

Прислать комментарий     Решение

Задача 102865

Темы:   [ Ребусы ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 7,8

Расшифровать пример на умножение, если буквой Ч зашифрованы чётные числа, а буквой Н – нечётные.

Прислать комментарий     Решение

Задача 88297

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 4
Классы: 7,8,9

Кащей Бессмертный загадывает три натуральных числа: a, b, c. Иван Царевич должен назвать ему три числа: XYZ, после чего Кащей сообщает ему сумму aX + bY + cZ, затем Иван Царевич говорит еще один набор чисел xyz и Кащей сообщает ему сумму ax + by + cz. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?
Прислать комментарий     Решение


Задача 89956

Тема:   [ Математическая логика (прочее) ]
Сложность: 4
Классы: 6,7,8

Попугаи. Собрались три попугая — Гоша, Кеша и Рома. Один из них всегда говорит правду, другой всегда лжет, а третий — хитрец, он иногда говорит правду, иногда лжет. На вопрос: «Кто Кеша?» — попугаи ответили так: Гоша: — Кеша лжец. Кеша: — Я хитрец! Рома: — Он абсолютно честный попугай. Кто же из попугаев честный, кто лжец, а кто хитрец?
Прислать комментарий     Решение


Задача 103985

Темы:   [ Четность и нечетность ]
[ Метод спуска ]
Сложность: 4
Классы: 6,7,8

По кругу расставлены 15 натуральных чисел. Докажите, что найдутся два соседних числа такие, что после их выкидывания оставшиеся числа нельзя разбить на две группы с равной суммой.
Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .