Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В США дату принято записывать так: номер месяца, потом номер дня и год. В Европе же сначала идёт число, потом месяц и год. Сколько в году дней, дату которых нельзя прочитать однозначно, не зная, каким способом она написана?

Вниз   Решение


На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.

ВверхВниз   Решение


Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке  1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18,  то наименьшая из разностей между номерами соседних (по кругу) секторов равна  12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?

ВверхВниз   Решение


При каких значениях a и b выражение  p = 2a² − 8ab + 17b² − 16a − 4b + 2044  принимает наименьшее значение? Чему равно это значение?

ВверхВниз   Решение


Опустить из данной точки A вне прямой l перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.)

ВверхВниз   Решение


Режем прямоугольник. Клетчатый прямоугольник разрезали на прямоугольники 1 х 2 (доминошки) так, что любая прямая, идущая по линиям сетки, рассекает кратное четырем число доминошек. Докажите, что длина одной из сторон делится на 4.

ВверхВниз   Решение


Что больше 2700 или 5300?

ВверхВниз   Решение


Используя пять троек, арифметические действия и возведение в степень, составьте числа от 1 до 10.

ВверхВниз   Решение


Кощей Бессмертный похитил Василису-премудрую у Иванушки-дурачка. Когда Иванушка пришёл к Кощею за невестой, то тот предложил Иванушке узнать свою Василису. В темнице, куда приведут Иванушку, будет и Василиса, и Баба Яга, превратившаяся в Василису так, что не отличишь. Иванушке разрешено задать каждой из них один вопрос: "Ты Василиса?". Иванушка знает, что Баба Яга всегда врёт, но Василиса об этом не знает. Сможет ли Иванушка узнать свою невесту?

Вверх   Решение

Задачи

Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 644]      



Задача 102827

Темы:   [ Построения ]
[ Касающиеся окружности ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 7,8,9

Три попарно касающиеся окружности. Из трех данных точек как из центров постройте три попарно касающиеся окружности.
Прислать комментарий     Решение


Задача 102864

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 7,8

Какие буквы соответствуют цифрам частного? Восстановите все цифры, если с = 7.


Прислать комментарий     Решение

Задача 103970

Темы:   [ Упаковки ]
[ Теория алгоритмов (прочее) ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 6,7,8

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
Прислать комментарий     Решение


Задача 104012

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8

Кощей Бессмертный похитил Василису-премудрую у Иванушки-дурачка. Когда Иванушка пришёл к Кощею за невестой, то тот предложил Иванушке узнать свою Василису. В темнице, куда приведут Иванушку, будет и Василиса, и Баба Яга, превратившаяся в Василису так, что не отличишь. Иванушке разрешено задать каждой из них один вопрос: "Ты Василиса?". Иванушка знает, что Баба Яга всегда врёт, но Василиса об этом не знает. Сможет ли Иванушка узнать свою невесту?
Прислать комментарий     Решение


Задача 104031

Темы:   [ Выигрышные и проигрышные позиции ]
[ Ним-сумма ]
Сложность: 3+
Классы: 7,8,9

а) На столе лежат 111 спичек. Маша и Даша по очереди берут со стола по несколько спичек, но не больше десяти за один раз. Выигрывает тот, кто возьмет последнюю спичку. Кто победит при правильной игре?
б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз?
Прислать комментарий     Решение


Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .