ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите все степени чисел 2, 3, 5, 6, 7, 11, 12, лежащие в промежутке от 1 до 10000 и выстройте их по порядку. Найдите среди них пары чисел, разность между которыми не превосходит 10. На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников. Чтобы открыть сейф, нужно ввести код – число, состоящее из семи цифр: двоек и троек. Сейф откроется, если двоек больше, чем троек, а код делится и на 3, и на 4. Придумайте код, открывающий сейф. На доске 6×6 расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться Найдите наименьшее натуральное n, для которого число nn не является делителем числа 2008!. Докажите, что дробно-линейное отображение переводит каждую окружность или прямую линию снова в окружность или прямую линию. Точка z против часовой стрелки обходит квадрат с вершинами
–1 – i, 2 – i, 2 + 2i, –1 + 2i. Как при этом ведут себя точки На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске? Людоедом называется фантастическая шахматная фигура, которая может ходить как шахматный король – на соседнюю клетку по вертикали или горизонтали, но не может ходить по диагонали. Два людоеда стоят на противоположных угловых полях шахматной доски и начинают ходить по очереди. Людоеду, вставшему на клетку, где уже стоит другой людоед, разрешается им пообедать. Кто кого съест при правильной игре и как ему надо для этого играть? Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1. |
Страница: 1 2 >> [Всего задач: 6]
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.
В круглый бокал, осевое сечение которого — график функции y = x4, опускают
вишенку — шар радиуса r. При каком наибольшем r шар коснется нижней
точки дна? (Другими словами, каков максимальный радиус r круга, лежащего в
области y
Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой.
Докажите, что для любого k > 1 найдётся такая степень двойки, что среди k последних её цифр не менее половины составляют девятки.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке