ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC известно, что AA1 – медиана, AA2 – биссектриса, K – такая точка на AA1 , для которой KA2 || AC . Докажите, что AA2 KC .

Вниз   Решение


Докажите, что

| x| + | y| + | z|$\displaystyle \le$| x + y - z| + | x - y + z| + |-x + y + z|,

где x, y, z — действительные числа.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 107790

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 2+
Классы: 7,8,9

Докажите, что

| x| + | y| + | z|$\displaystyle \le$| x + y - z| + | x - y + z| + |-x + y + z|,

где x, y, z — действительные числа.
Прислать комментарий     Решение

Задача 107791

Темы:   [ Раскраски ]
[ Призма (прочее) ]
[ Периодичность и непериодичность ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10,11

Можно ли рёбра n-угольной призмы раскрасить в три цвета так, чтобы на каждой грани были все три цвета и в каждой вершине сходились рёбра разных цветов, если   а)  n = 1995;   б)  n = 1996.

Прислать комментарий     Решение

Задача 107793

Темы:   [ Аддитивность интеграла ]
[ Линейность интеграла ]
[ Перенос помогает решить задачу ]
[ Многочлены (прочее) ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

Разрезать отрезок  [–1, 1]  на чёрные и белые отрезки так, чтобы интегралы от любой  а) линейной функции;  б) квадратного трёхчлена по белым и чёрным отрезкам были равны.

Прислать комментарий     Решение

Задача 108188

Темы:   [ Векторы помогают решить задачу ]
[ Отношение, в котором биссектриса делит сторону ]
[ Разложение вектора по двум неколлинеарным векторам ]
[ Скалярное произведение. Соотношения ]
[ Замечательное свойство трапеции ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9

В треугольнике ABC известно, что AA1 – медиана, AA2 – биссектриса, K – такая точка на AA1 , для которой KA2 || AC . Докажите, что AA2 KC .
Прислать комментарий     Решение


Задача 107794

Тема:   [ Периодичность и непериодичность ]
Сложность: 5-
Классы: 8,9,10,11

Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)?

Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .