ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что PA = PK и QA = QK. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
Можно ли разбить все пространство на правильные тетраэдры и октаэдры?
На сторонах треугольника ABC во внешнюю сторону построены квадраты ABMN, BCKL, ACPQ. На отрезках NQ и PK построены квадраты NQZT и PKXY. Разность площадей квадратов ABMN и BCKL равна d. Найдите разность площадей квадратов NQZT и PKXY
Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
Можно ли вычеркнуть из произведения 1!·2!·3!·...·100! один из факториалов так, чтобы произведение оставшихся было квадратом целого числа?
AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что PA = PK и QA = QK.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|