ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что если  (m, 30) = 1,  то число, состоящее из цифр периода дроби 1/m, делится на 9.

Вниз   Решение


Назовём точку внутри треугольника хорошей, если три проходящие через неё чевианы равны. В треугольнике ABC стороны AB и BC равны, а количество хороших точек нечётно. Чему оно может быть равно?

ВверхВниз   Решение


Автор: Саблин А.

Офеня купил на оптовом рынке партию ручек и предлагает покупателям либо одну ручку за 5 рублей, либо три ручки за 10 рублей. От каждого покупателя Офеня получает одинаковую прибыль. Какова оптовая цена ручки?

ВверхВниз   Решение


На Луне имеют хождение монеты достоинством в 1, 15 и 50 фертингов. Незнайка отдал за покупку несколько монет и получил сдачу – на одну монету больше. Какова наименьшая возможная цена покупки?

ВверхВниз   Решение


На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы
  а) ровно 4 клетки?   б) ровно 5 клеток?   в) все 8 клеток?

ВверхВниз   Решение


Докажите, что составное число n всегда имеет делитель, больший 1, но не больший  .

ВверхВниз   Решение


На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх?

ВверхВниз   Решение


В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

ВверхВниз   Решение


Пусть  (n, 10) = 1,  m < n,  (m, n) = 1,  и t – наименьшее число, при котором  10t – 1  делится на n.
Докажите, что t кратно длине периода дроби m/n.
Будет ли это длина периода?

ВверхВниз   Решение


Найдите все такие тройки действительных чисел x, y, z, что  1 + x4 ≤ 2(y – z)² 1 + y4 ≤ 2(z – x)²,  1 + z4 ≤ 2(x – y)².

ВверхВниз   Решение


На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?

ВверхВниз   Решение


Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



Задача 107802

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
б) Если каждую задачу решили четыре ученика, то может оказаться, что таких двоих не найдётся.

Прислать комментарий     Решение

Задача 108009

Темы:   [ Треугольник (построения) ]
[ Подерный (педальный) треугольник ]
[ Правильный (равносторонний) треугольник ]
[ ГМТ и вписанный угол ]
[ Метод ГМТ ]
[ Подобные треугольники (прочее) ]
[ Теорема синусов ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9

Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.

Прислать комментарий     Решение

Задача 108114

Темы:   [ Четырехугольники (прочее) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 8,9

В плоскости выпуклого четырёхугольника ABCD расположена точка P. Проведены биссектрисы PK,PL, PM и PN треугольников APB, BPC, CPD и DPA соответственно.
  а) Найдите хотя бы одну такую точку P, для которой четырёхугольник KLMN – параллелограмм.
  б) Найдите все такие точки.

Прислать комментарий     Решение

Задача 98279

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Невыпуклые многоугольники ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?

Прислать комментарий     Решение

Задача 98286

Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Дано n чисел, p – их произведение. Разность между p и каждым из этих чисел – нечётное число. Докажите, что все данные n чисел иррациональны.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .