Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 41]
Прямоугольник ABCD с площадью 1 сложили по прямой так, что точка
C совпала с A.
Докажите, что площадь получившегося пятиугольника меньше ¾.
Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая,
проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам.
Под каким углом видна из вершины прямого угла прямоугольного треугольника
проекция на гипотенузу вписанной окружности?
|
|
Сложность: 4- Классы: 7,8,9
|
В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
а) Может ли журналист установить, кто из компании есть Z, задав
менее n вопросов?
б) Найдите наименьшее количество вопросов, достаточное для того,
чтобы наверняка найти Z, и докажите, что меньшим числом вопросов обойтись нельзя.
(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько
вопросов.)
|
|
Сложность: 4- Классы: 10,11
|
Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом
только по целым сторонам, так, что общая сторона двух треугольников всегда
служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 41]