ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что если  (m, 30) = 1,  то число, состоящее из цифр периода дроби 1/m, делится на 9.

Вниз   Решение


Назовём точку внутри треугольника хорошей, если три проходящие через неё чевианы равны. В треугольнике ABC стороны AB и BC равны, а количество хороших точек нечётно. Чему оно может быть равно?

ВверхВниз   Решение


Автор: Саблин А.

Офеня купил на оптовом рынке партию ручек и предлагает покупателям либо одну ручку за 5 рублей, либо три ручки за 10 рублей. От каждого покупателя Офеня получает одинаковую прибыль. Какова оптовая цена ручки?

ВверхВниз   Решение


На Луне имеют хождение монеты достоинством в 1, 15 и 50 фертингов. Незнайка отдал за покупку несколько монет и получил сдачу – на одну монету больше. Какова наименьшая возможная цена покупки?

ВверхВниз   Решение


На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы
  а) ровно 4 клетки?   б) ровно 5 клеток?   в) все 8 клеток?

ВверхВниз   Решение


Докажите, что составное число n всегда имеет делитель, больший 1, но не больший  .

ВверхВниз   Решение


На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх?

ВверхВниз   Решение


В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

ВверхВниз   Решение


Пусть  (n, 10) = 1,  m < n,  (m, n) = 1,  и t – наименьшее число, при котором  10t – 1  делится на n.
Докажите, что t кратно длине периода дроби m/n.
Будет ли это длина периода?

ВверхВниз   Решение


Найдите все такие тройки действительных чисел x, y, z, что  1 + x4 ≤ 2(y – z)² 1 + y4 ≤ 2(z – x)²,  1 + z4 ≤ 2(x – y)².

ВверхВниз   Решение


На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка P внутри квадрата?

ВверхВниз   Решение


Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]      



Задача 108071

Темы:   [ Неравенства с площадями ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Ромбы. Признаки и свойства ]
[ Площадь треугольника (через высоту и основание) ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Прямоугольник ABCD с площадью 1 сложили по прямой так, что точка C совпала с A.
Докажите, что площадь получившегося пятиугольника меньше ¾.

Прислать комментарий     Решение

Задача 108073

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Признаки подобия ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая, проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам.

Прислать комментарий     Решение

Задача 108075

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?

Прислать комментарий     Решение

Задача 98278

Темы:   [ Математическая логика (прочее) ]
[ Теория алгоритмов ]
[ Ориентированные графы ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
  а) Может ли журналист установить, кто из компании есть Z, задав менее n вопросов?
  б) Найдите наименьшее количество вопросов, достаточное для того, чтобы наверняка найти Z, и докажите, что меньшим числом вопросов обойтись нельзя.
(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько вопросов.)

Прислать комментарий     Решение

Задача 98287

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Медиана, проведенная к гипотенузе ]
[ Наибольший треугольник ]
Сложность: 4-
Классы: 10,11

Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .