ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 79605  (#1)

Темы:   [ Неравенства с модулями ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3-
Классы: 7,8,9

Докажите, что если  a + b + c + d > 0,  a > cb > d,  то  |a + b| > |c + d|.

Прислать комментарий     Решение

Задача 79606  (#2)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Может ли во время шахматной партии на каждой из 30 диагоналей оказаться нечётное число фигур?

Прислать комментарий     Решение

Задача 79607  (#3)

Тема:   [ Подсчет двумя способами ]
Сложность: 3
Классы: 7,8,9

Каждый участник двухдневной олимпиады в первый день решил столько же задач, сколько все остальные в сумме – во второй день.
Докажите, что все участники решили поровну задач.

Прислать комментарий     Решение

Задача 79608  (#4)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9

Каково наименьшее число гирь в наборе, который можно разложить и на 3, и на 4, и на 5 кучек равной массы?
Прислать комментарий     Решение


Задача 108166  (#5)

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Медиана, проведенная к гипотенузе ]
[ Проекция на прямую (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .