Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Треугольник ABC вписан в окружность с центром в O . X "– произвольная точка внутри треугольника ABC , такая, что XAB= XBC=ϕ , а P – такая точка, что PX OX , XOP=ϕ , причем углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.

Вниз   Решение


Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны?

ВверхВниз   Решение


Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.)

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?

ВверхВниз   Решение


В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.

ВверхВниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

ВверхВниз   Решение


В пространстве заданы три луча: DA, DB и DC, имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°. Сфера пересекает луч DA в точках A1 и A2, луч DB – в точках B1 и B2, луч DC – в точках C1 и C2. Найдите площадь треугольника A2B2C2, если площади треугольников DA1B1, DA1C1, DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

ВверхВниз   Решение


Решить уравнение  (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0.

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 132]      



Задача 109145

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10

Показать, что sin 36o=1/4 .
Прислать комментарий     Решение


Задача 109155

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 4
Классы: 9,10

Из условия tgϕ=1/ cosα cosβ+ tgα tgβ вывести, что cos 2ϕ 0 .
Прислать комментарий     Решение


Задача 109157

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4
Классы: 9,10,11

Доказать, что для любого целого n число     можно представить в виде разности     где k – целое.

Прислать комментарий     Решение

Задача 109166

Темы:   [ Уравнения высших степеней (прочее) ]
[ Замена переменных ]
Сложность: 4
Классы: 9,10,11

Решить уравнение  (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0.

Прислать комментарий     Решение

Задача 109174

Темы:   [ Уравнения в целых числах ]
[ Иррациональные уравнения ]
Сложность: 4
Классы: 9,10

Найти решение уравнения     в целых числах.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .