Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

Вниз   Решение


В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.

ВверхВниз   Решение


Автор: Фольклор

В треугольнике ABC медиана, проведённая из вершины A к стороне BC, в четыре раза меньше стороны AB и образует с ней угол 60°. Найдите угол А.

ВверхВниз   Решение


2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.

ВверхВниз   Решение


Найдите все такие натуральные числа a и b, что  (a + b²)(b + a²)  является целой степенью двойки.

ВверхВниз   Решение


Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.
Сколько еще раз повторится такая ситуация в этом тысячелетии?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 109494  (#1)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Ребусы ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.
Сколько еще раз повторится такая ситуация в этом тысячелетии?

Прислать комментарий     Решение

Задача 109495  (#2)

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

Прислать комментарий     Решение

Задача 109496  (#3)

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.

Прислать комментарий     Решение

Задача 109497  (#4)

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 4-
Классы: 7,8,9

Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг?

Прислать комментарий     Решение

Задача 109498  (#5)

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 5-
Классы: 8,9,10,11

В однокруговом футбольном турнире играли  n > 4  команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
  а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
  б) При каком наименьшем n могут не найтись пять таких команд?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .