ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Иванов И.

В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 23]      



Задача 109777  (#03.5.11.5)

Темы:   [ Кубические многочлены ]
[ Теорема Виета ]
[ Формула Герона ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Рациональные и иррациональные числа ]
Сложность: 5-
Классы: 10,11

Длины сторон треугольника являются корнями кубического уравнения с рациональными коэффициентами.
Докажите, что длины высот треугольника являются корнями уравнения шестой степени с рациональными коэффициентами.

Прислать комментарий     Решение

Задача 109793  (#03.5.11.6)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 7,8,9

Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных  m, n > 100  сумма чисел в любом прямоугольнике m×n клеток делилась на  m + n?

Прислать комментарий     Решение

Задача 109778  (#03.5.11.7)

Темы:   [ Связность и разложение на связные компоненты ]
[ Обход графов ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Перебор случаев ]
Сложность: 5+
Классы: 9,10,11

Автор: Иванов И.

В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .