|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Натуральное число n разрешается заменить на число ab, если a + b = n и числа a и b натуральные. Пусть O — центр описанной окружности треугольника ABC, H — точка пересечения высот. Докажите, что a2 + b2 + c2 = 9R2 - OH2. Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]
Докажите, что для любых положительных чисел x и y справедливо
неравенство
Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?
Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Найдите все такие простые числа p, что число p² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|