ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В основании пирамиды ABCD лежит равнобедренный прямоугольный треугольник ABC с гипотенузой AB=4 . Высота пирамиды равна 2, а её основание совпадает с серединой AC . Найдите двугранный угол между гранями ABD и ADC .

Вниз   Решение


Все клетки клетчатой плоскости окрашены в 5 цветов так, что в любой фигуре вида



все цвета различны. Докажите, что и в любой фигуре вида


все цвета различны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 110011  (#99.4.9.3)

Темы:   [ Неравенства. Метод интервалов ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10

Произведение положительных чисел x, y и z равно 1.
Докажите, что если  1/x + 1/y + 1/z ≥ x + y + z,  то для любого натурального k выполнено неравенство  x–k + y–k + z–k ≥ xk + yk + zk.

Прислать комментарий     Решение

Задача 110012  (#99.4.9.4)

Темы:   [ Процессы и операции ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Антонов М.

Лабиринт представляет собой квадрат 8×8, в каждой клетке 1×1 которого нарисована одна из четырёх стрелок (вверх, вниз, вправо, влево). Верхняя сторона правой верхней клетки – выход из лабиринта. В левой нижней клетке находится фишка, которая каждым своим ходом перемещается на одну клетку в направлении, указанном стрелкой. После каждого хода стрелка в клетке, в которой только что была фишка, поворачивается на 90° по часовой стрелке. Если фишка должна сделать ход, выводящий ее за пределы квадрата 8×8, она остается на месте, а стрелка также поворачивается на 90° по часовой стрелке. Докажите, что рано или поздно фишка выйдет из лабиринта.

Прислать комментарий     Решение

Задача 110013  (#99.4.9.5)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
[ Доказательство от противного ]
Сложность: 4
Классы: 7,8,9

Все клетки клетчатой плоскости окрашены в 5 цветов так, что в любой фигуре вида



все цвета различны. Докажите, что и в любой фигуре вида


все цвета различны.
Прислать комментарий     Решение

Задача 110022  (#99.4.9.6)

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

Автор: Храмцов Д.

В коробке лежит полный набор костей домино. Два игрока по очереди выбирают из коробки по одной кости и выкладывают их на стол, прикладывая к уже выложенной цепочке с любой из двух сторон по правилам домино. Проигрывает тот, кто не может сделать очередной ход. Кто выиграет при правильной игре?
Прислать комментарий     Решение


Задача 110014  (#99.4.9.7)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.
(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .