ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что Назовем медианой системы 2 n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2 n точек, никакие три из которых не лежат на одной прямой? Набор пятизначных чисел {N1 , Nk} таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел N1 , Nk . Найдите наименьшее возможное значение k . Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль? В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
Произведение квадратных трёхчленов x² + a1x + b1, x² + a2x + b2, ..., x² + anx + bn равно многочлену P(x) = x2n + c1x2n–1 + c2x2n–2 + ... + c2n–1x + c2n, где коэффициенты c1, c2, ..., c2n положительны. Докажите, что для некоторого k (1 ≤ k ≤ n) коэффициенты ak и bk положительны.
В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.
Докажите, что для каждого x такого, что sin x
В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке