Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Квадрат n×n ( n 3 ) склеен в цилиндр. Часть клеток покрашена в черный цвет. Докажите, что найдутся две параллельных линии (две горизонтали, две вертикали или две диагонали), содержащие одинаковое количество черных клеток.

Вниз   Решение


Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды со стороной основания a и высотой h .

ВверхВниз   Решение


Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что  MI = r/3  тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.

ВверхВниз   Решение


При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

ВверхВниз   Решение


В остроугольном треугольнике проведены высоты AA' и BB'. На дуге ACB описанной окружности треугольника ABC выбрана точка D. Пусть прямые AA' и BD пересекаются в точке P, а прямые BB' и AD пересекаются в точке Q. Докажите, что прямая A'B' проходит через середину отрезка PQ.

ВверхВниз   Решение


В неравнобедренном остроугольном треугольнике ABC точки C0 и B0 – середины сторон AB и AC соответственно, O – центр описанной окружности, H – точка пересечения высот. Прямые BH и OC0 пересекаются в точке P, а прямые CH и OB0 – в точке Q. Оказалось, что четырёхугольник OPHQ – ромб. Докажите, что точки A, P и Q лежат на одной прямой.

ВверхВниз   Решение


Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды с боковым ребром b и углом β боковой грани с плоскостью основания.

ВверхВниз   Решение


Сколькими способами числа 20, 21, 2², ..., 22005 можно разбить на два непустых множества A и B так, чтобы уравнение  x² – S(A)x + S(B) = 0,  где S(M) – сумма чисел множества M, имело целый корень?

ВверхВниз   Решение


Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды со стороной основания a боковым ребром b .

ВверхВниз   Решение


Найдите все такие тройки простых чисел p, q, r, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.

ВверхВниз   Решение


Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что  BP = CP.

ВверхВниз   Решение


Автор: Нилов Ф.

В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 6702]      



Задача 110341

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 110345

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды с боковым ребром b и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 110349

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной четырёхугольной пирамиды с высотой h и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 110364

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды со стороной основания a и углом α бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Задача 110365

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 2
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды со стороной основания a и углом β боковой грани с плоскостью основания.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .