Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Вниз   Решение


Автор: Антонов М.

Правильный треугольник разбит на правильные треугольники со стороной 1 линиями, параллельными его сторонам и делящими каждую сторону на n частей (на рисунке  n = 5).

Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?

ВверхВниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

ВверхВниз   Решение


Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)

ВверхВниз   Решение


Натуральное число N в 999...99 (k девяток) раз больше суммы своиx цифр. Укажите все возможные значения k и для каждого из них приведите пример такого числа.

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 111333  (#1)

Темы:   [ Средние величины ]
[ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

Прислать комментарий     Решение

Задача 111334  (#2)

Темы:   [ Симметрия помогает решить задачу ]
[ Процессы и операции ]
[ Задачи на движение ]
Сложность: 4
Классы: 8,9,10

Велосипедист путешествует по кольцевой дороге, двигаясь в одном направлении. Каждый день он проезжает 71 км и останавливается ночевать на обочине. На дороге есть аномальная зона длины 71 км. Если велосипедист останавливается в ней на ночлег на расстоянии y км от одной границы зоны, просыпается он в противоположном месте зоны, на расстоянии y км от другой её границы. Докажите, что в каком бы месте велосипедист ни начал своё путешествие, рано или поздно он остановится в нём на ночлег или же в нём проснётся.

Прислать комментарий     Решение

Задача 111335  (#3)

Темы:   [ Вписанный угол равен половине центрального ]
[ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Пусть AL – биссектриса треугольника ABC, O – центр описанной около этого треугольника окружности, D – такая точка на стороне AC, что  AD = AB.  Докажите, что прямые AO и LD перпендикулярны.

Прислать комментарий     Решение

Задача 111336  (#4)

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Сочетания и размещения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4+
Классы: 9,10

Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?

Прислать комментарий     Решение

Задача 111337  (#5)

Темы:   [ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 9,10

У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .