ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для треугольника со сторонами a , b , c и площадью S выполнено неравенство

a2+b2+c2- (|a-b|+|b-c|+|c-a|)2 4 S.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 111721  (#16)

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Гомотетичные окружности ]
[ Композиции гомотетий ]
[ Гомотетия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 9,10

Даны две окружности. Общая внешняя касательная касается их в точках A и B . Точки X , Y на окружностях таковы, что существует окружность, касающаяся данных в этих точках, причем одинаковым образом (внешним или внутренним). Найдите геометрическое место точек пересечения прямых AX и BY .
Прислать комментарий     Решение


Задача 111722  (#17)

Темы:   [ Необычные построения (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
[ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
Сложность: 5
Классы: 8,9,10

Дан треугольник ABC и линейка, на которой отмечены два отрезка, равные AC и BC . Пользуясь только этой линейкой, найдите центр вписанной окружности треугольника, образованного средними линиями ABC .
Прислать комментарий     Решение


Задача 111723  (#18)

Темы:   [ Неравенства с площадями ]
[ Формула Герона ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10

Докажите, что для треугольника со сторонами a , b , c и площадью S выполнено неравенство

a2+b2+c2- (|a-b|+|b-c|+|c-a|)2 4 S.

Прислать комментарий     Решение

Задача 111724  (#19)

Темы:   [ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Параллелограммы (прочее) ]
Сложность: 4
Классы: 8,9

Дан параллелограмм ABCD, в котором  AB = a,  AD = b.  Первая окружность имеет центр в вершине A и проходит через D, вторая имеет центр в C и проходит через D. Произвольная окружность с центром B пересекает первую окружность в точках M1, N1, а вторую – в точках M2, N2. Чему равно отношение  M1N1 : M2N2?

Прислать комментарий     Решение

Задача 111725  (#20)

Темы:   [ Свойства симметрии и центра симметрии ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Вспомогательные равные треугольники ]
[ Площади криволинейных фигур ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

а) Многоугольник обладает следующим свойством: если провести прямую через любые две точки, делящие его периметр пополам, то эта прямая разделит многоугольник на два равновеликих многоугольника. Верно ли, что многоугольник центрально симметричен?
б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .