Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4.

Вниз   Решение


Пусть a, b, c, d, e и f – некоторые числа, причём  ace ≠ 0.  Известно, что значения выражений  |ax + b| + |cx + d|  и  |ex + f |  равны при всех значениях x.
Докажите, что  ad = bc.

ВверхВниз   Решение


Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.

ВверхВниз   Решение


По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 111794  (#08.4.11.1)

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 9,10,11

Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при x², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при x, то получатся трёхчлены, имеющие корни.

Прислать комментарий     Решение

Задача 111795  (#08.4.11.2)

Темы:   [ Подсчет двумя способами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
Прислать комментарий     Решение


Задача 111805  (#08.4.11.3)

Темы:   [ Арифметическая прогрессия ]
[ Целая и дробная части. Принцип Архимеда ]
[ Ограниченность, монотонность ]
Сложность: 4
Классы: 9,10,11

Последовательность (an) задана условиями a1= 1000000 , an+1=n[]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
Прислать комментарий     Решение


Задача 111797  (#08.4.11.4)

Темы:   [ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательная окружность ]
[ Углы между биссектрисами ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средняя линия треугольника ]
Сложность: 5-
Классы: 9,10,11

Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что AKB'+ BKA'= ALB'+ BLA'=180o . Докажите, что прямая KL равноудалена от точек A' , B' , C' .
Прислать комментарий     Решение


Задача 111806  (#08.4.11.5)

Темы:   [ Математическая логика (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .