|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В прямоугольном параллелепипеде одно из сечений является правильным шестиугольником. Докажите, что этот параллелепипед – куб. Основания описанной трапеции равны 2 и 11. Докажите, что продолжения боковых сторон трапеции пересекаются под острым углом. |
Страница: 1 2 3 >> [Всего задач: 15]
Известно, что разность кубов корней квадратного уравнения ax² + bx + c = 0 равна 2011. Сколько корней имеет уравнение ax² + 2bx + 4c = 0?
Точки K и L – середины сторон АВ и ВС правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM.
Найдите наименьшее число, кратное 45, десятичная запись которого состоит только из единиц и нулей.
Функция f(x) определена для всех x,
кроме 1, и удовлетворяет равенству:
Основания описанной трапеции равны 2 и 11. Докажите, что продолжения боковых сторон трапеции пересекаются под острым углом.
Страница: 1 2 3 >> [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|