Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

Вниз   Решение


Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

ВверхВниз   Решение


Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3.

ВверхВниз   Решение


30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий.

ВверхВниз   Решение


Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

ВверхВниз   Решение


Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
Bерно ли, что a перпендикулярна α?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 185]      



Задача 116131

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Биссектриса делит дугу пополам ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

Прислать комментарий     Решение

Задача 116137

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Прямоугольные треугольники (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Даны радиусы r и R двух непересекающихся окружностей. Oбщие внутренние касательные этих окружностей перпендикулярны.
Hайдите площадь треугольника, ограниченного этими касательными, а также общей внешней касательной.

Прислать комментарий     Решение

Задача 116138

Темы:   [ Признаки и свойства параллелограмма ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 10,11

Дан четырёхугольник ABCD. A', B', C' и D' – середины сторон BC, CD, DA и AB соответственно. Известно, что  AA' = CC' и BB' = DD'.
Bерно ли, что ABCD – параллелограмм?

Прислать комментарий     Решение

Задача 116156

Темы:   [ Построения одной линейкой ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Из листа бумаги в клетку вырезали квадрат 2×2.
Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.

Прислать комментарий     Решение

Задача 116161

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Цилиндр ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
Bерно ли, что a перпендикулярна α?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .