ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шмаров В.

На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что
AM : MD = 2.  Пусть O – центр прямоугольника. Докажите, что точка пересечения медиан треугольника OKD лежит на описанной окружности треугольника COD.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116563  (#11.1)

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Задача 116564  (#11.2)

Темы:   [ Четность и нечетность ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 10,11

Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.

Прислать комментарий     Решение

Задача 116565  (#11.3)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанный угол равен половине центрального ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 10,11

Автор: Шмаров В.

На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что
AM : MD = 2.  Пусть O – центр прямоугольника. Докажите, что точка пересечения медиан треугольника OKD лежит на описанной окружности треугольника COD.

Прислать комментарий     Решение

Задача 116566  (#11.4)

Темы:   [ Комбинаторика (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Карасев Р.

2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по  x1, ..., x2011  кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по  y1, ..., y2011  кг цемента соответственно, причём
x1 + x2 + ... + x2011 = y1 + y2 + ... + y2011. За какое минимальное количество рейсов можно выполнить план при любых значениях чисел xi и yi и любой схеме дорог?

Прислать комментарий     Решение

Задача 116559  (#11.5)

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 9,10

Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 3)(n + 4)  будет целым.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .