ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Натуральные числа d и d' > d – делители натурального числа n. Докажите, что d' > d + d²/n. |
Страница: 1 2 >> [Всего задач: 8]
Натуральные числа d и d' > d – делители натурального числа n. Докажите, что d' > d + d²/n.
На стороне BC параллелограмма ABCD (∠A < 90°) отмечена точка T так, что треугольник ATD – остроугольный. Пусть O1, O2 и O3 – центры описанных окружностей треугольников ABT, DAT и CDT соответственно (см. рисунок).
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
Даны два различных приведённых кубических многочлена F(x) и G(x). Выписали все корни уравнений F(x) = 0, G(x) = 0, F(x) = G(x). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена F(x).
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке