Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между противоположными боковыми рёбрами.

Вниз   Решение


Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

ВверхВниз   Решение


а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

ВверхВниз   Решение


Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

ВверхВниз   Решение


Положительные числа a, b и c таковы, что  abc = 1.  Докажите неравенство

+ + ≤ 1.

ВверхВниз   Решение


Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



Задача 116896  (#8.2)

Темы:   [ Построение треугольников по различным точкам ]
[ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
[ Симметрия и построения ]
[ Общая касательная к двум окружностям ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC провели биссектрисы BB' и CC', а затем стёрли весь рисунок, кроме точек A, B' и C'.
Восстановите треугольник ABC при помощи циркуля и линейки.

Прислать комментарий     Решение

Задача 116897  (#8.3)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9

Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.

Прислать комментарий     Решение

Задача 116898  (#8.4)

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вспомогательные равные треугольники ]
Сложность: 4+
Классы: 8,9

Дан равнобедренный треугольник ABC, в котором  ∠B = 120°.  На продолжениях сторон AB и CB за точку B взяли точки P и Q соответственно так, что лучи AQ и CP пересекаются под прямым углом. Докажите, что  ∠PQB = 2∠PCQ.

Прислать комментарий     Решение

Задача 116899  (#8.5)

Темы:   [ Четырехугольник (неравенства) ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Существует ли такие выпуклый четырёхугольник и точка P внутри него, что сумма расстояний от P до вершин больше периметра четырёхугольника?

Прислать комментарий     Решение

Задача 116900  (#8.6)

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Автор: Туманян А.

Окружность Ω описана около треугольника ABC. На продолжении стороны AB за точку B взяли такую точку B1, что  AB1 = AC.  Биссектриса угла A пересекает Ω вторично в точке W. Докажите, что ортоцентр треугольника AWB1 лежит на Ω.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .