ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.
Петя может располагать три отрезка в пространстве произвольным образом.
После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так,
чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
Числа a, b, c таковы, что a²(b + c) = b²(a + c) = 2008 и a ≠ b. Найдите значение выражения c²(a + b). Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?
Докажите, что при
n
Fn + m = Fn - 1Fm + FnFm + 1.
Попробуйте доказать его двумя способами: при помощи метода математической индукции и при помощи интерпретации чисел Фибоначчи из задачи 3.109. Докажите также, что тождество Кассини (см. задачу 3.112) является частным случаем этого равенства. Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами. Определите, на какую наибольшую натуральную степень числа 2007 делится 2007! Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов. Уголком размера n×m , где m,n
Окружности с центрами O1 и O2 имеют общую хорду AB ,
Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 559]
Сколькими способами можно расставить чёрную и белую ладьи на шахматной доске так, чтобы они не били друг друга?
Сколькими способами можно поставить на шахматную доску белого и чёрного королей так, чтобы получилась допустимая правилами игры позиция?
Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?
Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
Сколько диагоналей имеет выпуклый:
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 559]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке