Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Кащей Бессмертный загадывает три натуральных числа: a, b, c. Иван Царевич должен назвать ему три числа: XYZ, после чего Кащей сообщает ему сумму aX + bY + cZ, затем Иван Царевич говорит еще один набор чисел xyz и Кащей сообщает ему сумму ax + by + cz. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?

Вниз   Решение


Стороны треугольника относятся как  5 : 4 : 3.  Найдите отношения отрезков сторон, на которые они делятся точками касания с вписанной окружностью.

ВверхВниз   Решение


Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается изнутри третьей окружности радиуса R в точках A и B соответственно. Найдите радиус R, если  AB = 11,  r = 5.

ВверхВниз   Решение


Решите в натуральных числах уравнение:
  а)  x² – y² = 31;
  б)  x² – y² = 303.

ВверхВниз   Решение


В алфавите племени Бум-Бум шесть букв. Словом является любая последовательность из шести букв, в которой есть хотя бы две одинаковые буквы.
Сколько слов в языке племени Бум-Бум?

ВверхВниз   Решение


Трое играют в настольный теннис, причем игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что первый игрок сыграл 10 партий, второй – 21. Сколько партий сыграл третий игрок?

ВверхВниз   Решение


Команды А, Б, В, Г и Д участвовали в эстафете. До соревнований пять болельщиков, высказали следующие прогнозы.
  1) команда Д займет 1-е место, команда В – 2-е;
  2) команда А займет 2-е место, Г – 4-е;
  3) В – 3-е место, Д – 5-е;
  4) В – 1-е место, Г – 4-е;
  5) А – 2-е место, В – 3-е.
В каждом прогнозе одна часть подтвердилась, а другая – нет. Какое место заняла каждая из команд?

ВверхВниз   Решение


Решить систему уравнений:
   3xyz – x³ – y³ – z³ = b³,
   x + y + z = 2b,
   x² + y² + z² = b².

ВверхВниз   Решение


Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM.

ВверхВниз   Решение


Пастух пас стадо из 100 голов. За это ему заплатили 200 р. За каждого быка заплатили 20 р., за корову – 10 р., а за теленка – 1 р.
Сколько в стаде быков, сколько коров и сколько телят?

ВверхВниз   Решение


Можно ли найти четыре целых числа, сумма и произведение которых являются нечётными числами?

ВверхВниз   Решение


Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга
  а) две ладьи;   б) двух королей;  в) двух слонов;   г) двух коней;   д) двух ферзей?
Все фигуры одного цвета.

Вверх   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 559]      



Задача 30344  (#035)

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2
Классы: 6,7

На полке стоят пять книг. Сколькими способами можно выложить в стопку несколько из них (стопка может состоять и из одной книги)?

Прислать комментарий     Решение

Задача 30345  (#036)

Темы:   [ Правило произведения ]
[ Шахматные доски и шахматные фигуры ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 6,7,8,9

Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?

Прислать комментарий     Решение

Задача 30346  (#037)

Тема:   [ Перестановки и подстановки (прочее) ]
Сложность: 2
Классы: 6,7,8

На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

Прислать комментарий     Решение

Задача 30347  (#038)

Темы:   [ Сочетания и размещения ]
[ Турниры и турнирные таблицы ]
Сложность: 2
Классы: 6,7

Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

Прислать комментарий     Решение

Задача 30348  (#039)

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
[ Перебор случаев ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 7,8,9

Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга
  а) две ладьи;   б) двух королей;  в) двух слонов;   г) двух коней;   д) двух ферзей?
Все фигуры одного цвета.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .