Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Докажите, что в правильной треугольной пирамиде двугранный угол между боковыми гранями больше чем 60°.

Вниз   Решение


На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.

ВверхВниз   Решение


  а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные сундуки, дать точный ответ на этот вопрос?
  б) А если сундуков было восемь, а Скупой рыцарь мог разложить поровну монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?

ВверхВниз   Решение


Пусть   = ,  где    – несократимая дробь.
Докажите, что неравенство  bn+1 < bn выполнено для бесконечного числа натуральных n.

ВверхВниз   Решение


Докажите, что  n² + 1  не делится на 3 ни при каком натуральном n.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 30374  (#017)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что  n5 + 4n  делится на 5 при любом натуральном n.

Прислать комментарий     Решение

Задача 30375  (#018)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что  n² + 1  не делится на 3 ни при каком натуральном n.

Прислать комментарий     Решение

Задача 30376  (#019)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Докажите, что  n³ + 2  не делится на 9 ни при каком натуральном n.

Прислать комментарий     Решение

Задача 30377  (#020)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что  n³ – n  делится на 24 при любом нечётном n.

Прислать комментарий     Решение

Задача 30378  (#021)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

а) Докажите, что  p² – 1  делится на 24, если p – простое число и  p > 3.
б) Докажите, что  p² – q²  делится на 24, если p и q – простые числа, большие 3.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .