ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника, принадлежащую только одному параллелограмму, назовем хорошей. Докажите, что хороших вершин не менее трех.

Вниз   Решение


На какую цифру оканчивается число 777777?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]      



Задача 30384  (#027)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9

Сумма трёх натуральных чисел, являющихся точными квадратами, делится на 9.
Докажите, что из них можно выбрать два, разность которых также делится на 9.

Прислать комментарий     Решение

Задача 30385  (#028)

Темы:   [ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Найдите последнюю цифру числа 19891989.

Прислать комментарий     Решение

Задача 30386  (#029)

Темы:   [ Периодичность и непериодичность ]
[ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Найдите последнюю цифру числа 250.

Прислать комментарий     Решение

Задача 30387  (#030)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9

На какую цифру оканчивается число 777777?

Прислать комментарий     Решение

Задача 30388  (#031)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2
Классы: 7,8

Найдите остаток от деления 2100 на 3.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .