ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Касательные к параболе в точках $ \alpha$,$ \beta$,$ \gamma$ образуют треугольник ABC (рис.). Докажите, что:
а) описанная окружность треугольника ABC проходит через фокус параболы;
б) высоты треугольника ABC пересекаются в точке, лежащей на директрисе параболы;
в) $S_{\alpha\beta\gamma}=2S_{ABC}$;
г) $\sqrt[3]{S_{\alpha\beta C}}+\sqrt[3]{S_{\beta\gamma A}}=
 \sqrt[3]{S_{\alpha\gamma B}}$.


Вниз   Решение


Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

ВверхВниз   Решение


Докажите, что число  6n³ + 3  не является шестой степенью целого числа ни при каком натуральном n.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 30399  (#042)

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Докажите, что число 10...050...01 (в каждой из двух групп по 100 нулей) не является кубом целого числа.

Прислать комментарий     Решение

Задача 30400  (#043)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что  a³ + b³ + 4  не является кубом целого числа ни при каких натуральных a и b.

Прислать комментарий     Решение

Задача 30401  (#044)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что число  6n³ + 3  не является шестой степенью целого числа ни при каком натуральном n.

Прислать комментарий     Решение

Задача 30402  (#045)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

x, y, z – натуральные числа, причём  x² + y² = z².  Докажите, что xy делится на 12.

Прислать комментарий     Решение

Задача 30403  (#046)

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 2+
Классы: 7,8,9

а)  a + 1  делится на 3. Докажите, что  4 + 7a  делится на 3.

б)  2 + a  и  35 – b  делятся на 11. Докажите, что  a + b  делится на 11.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .