ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров? Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности. Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных. В равнобедренном треугольнике радиус вписанной окружности составляет 2/7 высоты, а периметр этого треугольника равен 56. Найдите его стороны. Докажите, что ни одно из чисел вида 103n+1 нельзя представить в виде суммы двух кубов натуральных чисел. Доказать, что в последовательности 11, 111, 1111, 11111, ... нет точных квадратов. В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6. В остроугольном треугольнике ABC проведены высоты CC1 и AA1. Известно, что AC = 1 и ∠C1CA1 = α. В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы. Окружность, центр которой лежит на гипотенузе AB прямоугольного треугольника ABC, касается двух катетов AC и BC соответственно в точках E и D. Сумма 123 чисел равна 3813. Доказать, что из этих чисел можно выбрать 100 с суммой не меньше 3100. При каких целых n число 20n + 16n – 3n – 1 делится на 323? Какое число нужно добавить к числу (n² – 1)1000(n² + 1)1001, чтобы результат делился на n? |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 559]
Докажите, что ни одно из чисел вида 103n+1 нельзя представить в виде суммы двух кубов натуральных чисел.
Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.
Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.
а) Может ли квадрат натурального числа оканчиваться на 2? б) Можно ли, используя только цифры 2, 3, 7, 8 (возможно, по несколько раз), составить квадрат натурального числа?
Какое число нужно добавить к числу (n² – 1)1000(n² + 1)1001, чтобы результат делился на n?
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 559]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке