ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Как известно, для участия в лотерее "Спортлото" нужно указать шесть номеров из имеющихся на карточке 45 номеров.
  а) Сколькими способами можно заполнить карточку "Спортлото"?
  б) После тиража организаторы лотереи решили подсчитать, каково число возможных вариантов заполнения карточки, при которых могло быть угадано ровно три номера. Помогите им в этом подсчёте.

   Решение

Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 559]      



Задача 30705  (#019)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 7,8

Сколько существует десятизначных чисел, сумма цифр которых равна   а) 2;   б) 3;   в) 4?

Прислать комментарий     Решение

Задача 30706  (#020)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

Человек имеет шесть друзей и в течение пяти дней приглашает к себе в гости каких-то троих из них так, чтобы компания ни разу не повторялась.
Сколькими способами он может это сделать?

Прислать комментарий     Решение

Задача 30707  (#021)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

Как известно, для участия в лотерее "Спортлото" нужно указать шесть номеров из имеющихся на карточке 45 номеров.
  а) Сколькими способами можно заполнить карточку "Спортлото"?
  б) После тиража организаторы лотереи решили подсчитать, каково число возможных вариантов заполнения карточки, при которых могло быть угадано ровно три номера. Помогите им в этом подсчёте.

Прислать комментарий     Решение

Задача 30708  (#022)

Темы:   [ Правило произведения ]
[ Теория множеств (прочее) ]
Сложность: 2+
Классы: 6,7

Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

Прислать комментарий     Решение

Задача 30710  (#024)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Целочисленные решетки (прочее) ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 7,8

План города имеет схему, изображенную на рисунке.

На всех улицах введено одностороннее движение: можно ехать только "вправо" или "вверх".
Сколько есть разных маршрутов, ведущих из точки A в точку B.

Прислать комментарий     Решение

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .