ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Во взводе служат три сержанта и несколько солдат. Сержанты по очереди дежурят по взводу. Командир издал такой приказ.
  1. За каждое дежурство должен быть дан хотя бы один наряд вне очереди.
  2. Никакой солдат не должен иметь более двух нарядов и получать более одного наряда за одно дежурство.
  3. Списки получивших наряды ни за какие два дежурства не должны совпадать.
  4. Сержант, первым нарушивший одно из изложенных выше правил, наказывается гауптвахтой.
Сможет ли хотя бы один из сержантов, не сговариваясь с другими, давать наряды так, чтобы не попасть на гауптвахту?

Вниз   Решение


По пустыне равномерно движется караван верблюдов длиной в 1 км. Всадник проехал от конца каравана к началу и вернулся к концу каравана. За это время караван прошел 1 км. Какой путь проехал всадник, если скорость его была постоянной?

ВверхВниз   Решение


Докажите, что     при любых x и y.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 83]      



Задача 30884  (#041)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9

Докажите неравенство   ¼ a² + b² + c² ≥ ab – ac + 2bc  при любых a, b, c.

Прислать комментарий     Решение

Задача 30885  (#042)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9

k, l, m – натуральные числа. Докажите, что  2k+l + 2k+m + 2l+m ≤ 2k+l+m+1 + 1.

Прислать комментарий     Решение

Задача 78470  (#043)

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 7,8

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Прислать комментарий     Решение

Задача 30887  (#044)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Докажите, что     при любых x и y.

Прислать комментарий     Решение

Задача 30888  (#045)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

x, y > 0.  Докажите, что  

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .