ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника? 20 команд сыграли круговой турнир по волейболу. Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4? Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от 1 до 8 так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало 45? А чтобы не превышало 1316? а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1). |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 83]
a, b, c ≥ 0. Докажите, что 2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc².
Докажите, что если a1 ≥ a2 ≥ ... ≥ an, b1 ≥ b2 ≥ ... ≥ bn, то наибольшая из сумм вида a1bk1 + a2bk2 + ... + anbkn
(k1, k2, ..., kn – перестановка чисел
Докажите, что при любом x выполняется неравенство x(x + 1)(x + 2)(x + 3) ≥ –1.
Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).
Докажите, что
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 83]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке