Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Вниз   Решение


20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

ВверхВниз   Решение


Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4?

ВверхВниз   Решение


Автор: Белухов Н.

Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от 1 до 8 так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало 45? А чтобы не превышало 1316?

ВверхВниз   Решение


а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

ВверхВниз   Решение


Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 83]      



Задача 30889  (#046)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9

a, b, c ≥ 0.  Докажите, что  2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc².

Прислать комментарий     Решение

Задача 61385  (#047)

Темы:   [ Классические неравенства (прочее) ]
[ Перестановки и подстановки (прочее) ]
[ Инварианты и полуинварианты ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что если   a1a2 ≥ ... ≥ an,   b1b2 ≥ ... ≥ bn,   то наибольшая из сумм вида   a1bk1 + a2bk2 + ... + anbkn     (k1, k2, ..., kn – перестановка чисел
1, 2, ..., n),  это сумма   a1b1 + a2b2 + ... + anbn,   а наименьшая – сумма   a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Задача 30891  (#048)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 3+
Классы: 6,7

Докажите, что при любом x выполняется неравенство  x(x + 1)(x + 2)(x + 3) ≥ –1.

Прислать комментарий     Решение

Задача 30892  (#049)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 6,7

Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Прислать комментарий     Решение

Задача 30893  (#050)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 6,7

Докажите, что   .

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .