ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Разложите функции В поселке 100 домов. Какое наибольшее число замкнутых не пересекающихся заборов можно построить, чтобы каждый забор огораживал хотя бы один дом и никакие два забора не огораживали бы одну и ту же совокупность домов? В ряд выписаны числа от 1 до 9999. Как вычеркнуть из этой записи 100 цифр так, чтобы оставшееся число было a) максимальным b) минимальным?
Доказать, что для любого n Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?
В центре куба
Найти остаток (116 + 1717)21·749 от деления на 8. Несколько человек построились в два ряда. Каждый во втором ряду выше стоящего перед ним. Доказать, что если каждый ряд построить по росту, то это свойство сохранится.
Найти остаток 418 + 517 от деления на 3. Через n!! обозначается произведение n(n – 2)(n – 4)... до единицы (или до двойки): например, 8!! = 8·6·4·2; 9!! = 9·7·5·3·1.
Доказать, что 776776 + 777777 + 778778 делится на 3. Некто А загадал число от 1 до 15. Некто В задает вопросы на которые можно отвечать ``да" или ``нет". Может ли В отгадать число, задав a) 4 вопроса; б) 3 вопроса. m и n взаимно просты, b – произвольное целое число. Доказать, что числа b, b + n, b + 2n, ..., b + (n – 1)n дают все возможные остатки по модулю m. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
a ≡ 68 (mod 1967), a ≡ 69 (mod 1968). Найти остаток от деления a на 14.
Докажите, что множество простых чисел вида p = 6k + 5 бесконечно.
Доказать, что 3n + 1 не делится на 10100.
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
m и n взаимно просты, b – произвольное целое число. Доказать, что числа b, b + n, b + 2n, ..., b + (n – 1)n дают все возможные остатки по модулю m.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке