ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку. а)
1 < cos Окружности
S1, S2,..., Sn касаются двух окружностей R1
и R2 и, кроме того, S1 касается S2 в точке A1, S2
касается S3 в точке A2..., Sn - 1 касается Sn в точке An - 1. Докажите, что точки
A1, A2,..., An - 1
лежат на одной окружности.
Отрезок MN, параллельный стороне CD
четырехугольника ABCD, делит его площадь пополам (точки M
и N лежат на сторонах BC и AD). Длины отрезков,
проведенных из точек A и B параллельно CD до пересечения
с прямыми BC и AD, равны a и b. Докажите,
что
MN2 = (ab + c2)/2, где c = CD.
Плоскость раскрашена в семь цветов. Обязательно
ли найдутся две точки одного цвета, расстояние между
которыми равно 1?
Даны три прямые a, b, c. Докажите, что композиция симметрий
ScoSboSa является симметрией относительно некоторой прямой тогда
и только тогда, когда данные прямые пересекаются в одной точке.
x² ≡ y² (mod 239). Доказать, что x ≡ y или x ≡ – y.
Докажите тождество:
13 + 23 +...+ n3 = (1 + 2 +...+ n)2.
Может ли m! + n! оканчиваться на 1990? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
Найти a) 3 последние цифры; б) 6 последних цифр числа 1999 + 2999 + ... + (106 – 1)999.
Доказать, что a2n+1 + (a – 1)n+2 делится на a² – a + 1 (a – целое, n – натуральное).
p и q – простые числа, большие 3. Доказать, что p² – q² делится на 24.
Может ли m! + n! оканчиваться на 1990?
Доказать, что n² + 5n + 16 не делится на 169 ни при каком натуральном n.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке